Использованные источники:
1. Canani RB, Cucchiara S, Cuomo R, Pace F, Papale F (2011)
Saccharomyces boulardii: a summary of the evidence for gastroenterology clinical practice in adults and children. Eur Rev Med Pharmaco 15(7):809–822. PMID: 21780551
2. Rodrigues ACP, Nardi RM, Bambirra EA, Vieira EC, Nicoli JR (1996) Effect of
Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexneri in conventional and gnotobiotic mice. J Appl Bacteriol 81:251–256.
https://doi.org/10.1111/j.1365-2672.1996.tb04325.x 3. Pothoulakis C, Kelly CP, Joshi MA, Gao N, O'Keane CJ, Castagliuolo I et al (1993)
Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 104:1108–1115.
https://doi.org/10.1016/0016-5085(93)90280-P
4. Buts JP, Dekeyser N, Stilmant C, Delem E, Smets F, Sokal E (2006)
Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr Res 60:24–29.
https://doi.org/10.1203/01.pdr.0000220322.31940.29 5. Buts JP, De Keyser N, Marandi S, Hermans D, Sokal EM, Chae YH et al (1999)
Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 45:89–96.
https://doi.org/10.1136/gut.45.1.89 6. Lazo-Velez MA, Serna-Saldivar SO, Rosales-Medina MF, Tinoco- Alvear M, an Briones-Garcia, M. (2018) Application of
Saccharomyces cerevisiae var. boulardii in food processing: A review. J Appl Microbiol 125:943–951.
https://doi.org/10.1111/jam.14037 7. Rekha CR, Vijayalakshmi G (2010) Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J Appl Microbiol 109:1198–1208.
https://doi.org/10.1111/j.1365-2672.2010.04745.x 8. Ryan EP, Heuberger AL, Weir TL, Barnett B, Broeckling CD, Prenni JE (2011) Rice bran fermented with
Saccharomyces boulardii generates novel metabolite profiles with bioactivity. J Agric Food Chem 59:1862–1870.
https://doi.org/10.1021/jf1038103 9. Değirmencioğlu N, Gurbuz O, Şahan Y (2016) The monitoring, via an in vitro digestion system, of the bioactive content of vegetable juice fermented with
Saccharomyces cerevisiae and
Saccharomyces boulardii. J Food Process Preserv 40:798–811.
https://doi.org/10.1111/jfpp.12704 10. Hennequin C, Thierry A, Richard GF, Lecointre G, Nguyen HV, Gaillardin C et al (2001) Microsatellite typing as a new tool for identification of
Saccharomyces cerevisiae Strains. J Clin Microbiol 39:551–559.
https://doi.org/10.1128/JCM.39.2.551-559.2001 11. Mills DR (1941) Differential staining of living and dead yeast cells. J Food Sci 6:361–371.
https://doi.org/10.1111/j.1365-2621.1941.tb16295.x 12. Diana C-R, Humberto H-S, Jorge YF (2015) Probiotic properties of leuconostoc mesenteroides isolated from Aguamiel of Agave salmiana. Probiotics Antimicro 7(2):107–117.
https://doi.org/10.1007/s12602-015-9187-5 13. Datta S, Timson DJ, Annapure US (2017) Antioxidant properties and global metabolite screening of the probiotic yeast
Saccharomyces cerevisiae var. boulardii. J Sci Food Agr 97(9):3039–3049.
https://doi.org/10.1002/jsfa.8147 14. Wang Z, Zheng L, Li C, Wu S, Xiao Y (2017) Preparation and antimicrobial activity of sulfopropyl chitosan in an ionic liquid aqueous solution. J Appl Polym Sci 134(26).
https://doi.org/10.1002/app.44989 15. Cai Y, Weng K, Guo Y, Peng J, Zhu Z-J (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575– 1586.
https://doi.org/10.1007/s11306-015-0809-4 16. Wang J, Zhang T, Shen X, Liu J, Zhao D, Sun Y et al (2016) Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 12:116.
https://doi.org/10.1007/s11306-016-1050-5 17. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787.
https://doi.org/10.1021/ac051437y 18. Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics –
Saccharomyces boulardii. Aliment Pharmacol Ther 26(6):767–778.
https://doi.org/10.1111/j.1365-2036.2007.03442.x 19. Goktas H, Dertli E, Sagdic O (2021) Comparison of functional characteristics of distinct
Saccharomyces boulardii strains isolated from commercial food supplements. LWT- Food Sci Technol 136(2):110340.
https://doi.org/10.1016/j.lwt.2020.110340 20. Nagashima AI, Pansiera PE, Baracat MM, Gomez RJHC (2013) Development of effervescent products, in powder and tablet form, supplemented with probiotics Lactobacillus acidophilus and
Saccharomyces boulardii. Food Sci Technol 33(4):605–611.
https://doi.org/10.1590/S0101-20612013000400002 21. Motey GA, Johansen PG, Owusu-Kwarteng J, Ofori LA, Obiri- Danso K, Siegumfeldt H, Larsen N, Jespersen L (2020) Probiotic potential of
Saccharomyces cerevisiae and
Kluyveromyces marxianus isolated from West African spontaneously fermented cereal and milk products. Yeast 37:403–412.
https://doi.org/10.1002/yea.3513 22. Pereira RP, Jadhav R, Baghela A et al (2021) In vitro assessment of probiotic potential of
Saccharomyces cerevisiae DABRP5 isolated from Bollo batter, a traditional goan fermented food. Probiotics & Antimicro Prot 13:796–808.
https://doi.org/10.1007/s12602-020-09734-8 23. Chelliah R, Kim EJ, Daliri BM, Antony U, Oh DH (2021) In vitro probitotic evaluation of
Saccharomyces boulardii with antimicrobial spectrum in a caenorhabditis elegans model. Foods 10(6):1428.
https://doi.org/10.3390/foods10061428 24. Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738.
https://doi.org/10.1128/AEM.72.3.1729-1738.2006 25. Bi J, Liu S, Du G, Chen J (2016) Bile salt tolerance of lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells. Biotechnol Lett 38(4):659–665.
https://doi.org/10.1007/s10529-015-2018-7 26. Fernandez-Pacheco P, Ramos Monge IM, Fernandez-Gonzalez M, Poveda Colado JM, Arevalo-Villena M (2021) Safety evaluation of yeasts with probiotic potential. Front Nutr 8:659328.
https://doi.org/10.3389/fnut.2021.659328 27. Hernandez-Gomez JG, Lopez-Bonilla A, Trejo-Tapia G, Avila- Reyes SV, Jimenez-Aparicio AR, Hernandez-Sanchez H (2021) In vitro bile salt hydrolase (BSH) activity screening of different probiotic microorganisms. Foods 10:674.
https://doi.org/10.3390/foods10030674 28. Naito Y, Tohda H, Okuda K, Takazoe I (1993) Adherence and hydrophobicity of invasive and noninvasive strains of porphyromonas gingivalis. Mol Oral Microbiol.
https://doi.org/10.1111/j.1399-302X.1993.tb00559.x 29. Bruckner S, Mosch HU (2012) Choosing the right lifestyle: adhesion and development in
Saccharomyces cerevisiae. FEMS microbiol rev 36(1):25–58.
https://doi.org/10.1111/j.1574-6976.2011.00275.x 30. Kelesidis T, Pothoulakis C (2012) Efficacy and safety of the probiotic
Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Ther adv in gastroenter 5:111–125.
https://doi.org/10.1177/1756283X11428502 31. Hanano A, Shaban M, Almousally I, Al-Ktaifani M (2015)
Saccharomyces cerevisiae SHSY detoxifies petroleum n-alkanes by an induced CYP52A58 and an enhanced order in cell surface hydrophobicity. Chemosphere 135:418–426.
https://doi.org/10.1016/j.chemosphere.2014.11.011 32. Ichikawa T, Hirata C, Takei M, Tagami N, Ikeda R (2017) Cell surface hydrophobicity and colony morphology of trichosporon asahii clinical isolates. Yeast 34(3):129–137.
https://doi.org/10.1002/yea.3220 33. Shiradhone AB, Ingle SS, Zore GB (2018) Microenvironment responsive modulations in the fatty acid content, cell surface hydrophobicity, and adhesion of candida albicans cells. J Fungi (Basel, Switzerland) 4(2):47.
https://doi.org/10.3390/jof4020047 34. Rosa SD, Cirillo P, Paglia A, Sasso L, Palma VD, Chiariello M (2010) Reactive oxygen species and antioxidants in the pathophysiology of cardiovascular disease: does the actual knowledge justify a clinical approach? Curr Vasc Pharmacol 8:259–275.
https://doi.org/10.2174/157016110790887009 35. Shobharani P, Prakash M, Halami PM (2015) Probiotic bacillus spp. In soy‐curd: nutritional, rheological, sensory, and antioxidant properties. J Food Sci 80(10–12):M2247–M2256.
https://doi.org/10.1111/1750-3841.13004 36. Feng T, Wang J (2020) Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes 12(1):1801944.
https://doi.org/10.1080/19490976.2020.1801944 37. Golubev WI, Pfeiffer I, Golubeva EW (2006) Mycocin production in pseudozyma tsukubaensis. Mycopathologia 162(4):313–316.
https://doi.org/10.1007/s11046-006-0065-2 38. Rima H, Steve L, Ismail F (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421.
https://doi.org/10.3389/fmicb.2012.00421 39. Offei B, Vandecruys P, Graeve SD, Foulquie-Moreno MR, Thevelein JM (2019) Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast
Saccharomyces cerevisiae var. boulardii. Genome Res 29:1478–1494.
http://www.genome.org/cgi/doi/10.1101/gr.243147.11... 40. Gut AM, Vasiljevic T, Yeager T, Donkor ON (2019) Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. J Funct Foods 58:56–66.
https://doi.org/10.1016/j.jff.2019.04.046 41. Witkin JM, Tortella FC (1991) Modulators of N-methyl-D-aspartate protect against diazepam- or phenobarbital-resistant cocaine convulsions. Life Sci 48:L51–L56.
https://doi.org/10.1016/0024-3205(91)90516-E
42. Fossom LH, Von Lubitz DKJE, Lin RCS, Skolnick P (1995) Neuroprotective actions of 1-aminocyclopropanecarboxylic acid (ACPC): a partial agonist at strychnine-insensitive glycine sites. Neurol Res 17:265–269
43. Nahum-Levy R, Fossom LH, Skolnick P, Benveniste M (1999) Putative partial agonist 1-aminocyclopropanecarboxylic acid acts concurrently as a glycine-site agonist and a glutamate-site antagonist at N-methyl-D-aspartate receptors. Mol Pharmacol 56:1207–1218.
https://doi.org/10.1124/mol.56.6.1207 44. Popik P, Holuj M, Nikiforuk A, Kos T, Skolnick P (2014) 1‑Aminocyclopropanecarboxylic acid (acpc) produces procognitive but not antipsychotic-like effects in rats. Psychopharmacology 232: 1025–1038.
https://doi.org/10.1007/s00213-014-3738-4 45. Sakko M, Tjaderhane L, Sorsa T, Hietala P, Jarvinen A, Bowyer P et al (2012) 2-Hydroxyisocaproic acid (HICA): a new potential topical antibacterial agent. Int J Antimicrob Agents 39:539–540.
https://doi.org/10.1016/j.ijantimicag.2012.02.006 46. Sakko M, Moore C, Novak-Frazer L, Rautemaa V, Sorsa T, Hietala P et al (2014) 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses 57:214–221.
https://doi.org/10.1111/myc.12145 47. Wu C, Huang Y, Lai X, Lai R, Zhao W, Zhang M et al (2014) Study on quality components and sleep-promoting effect of GABA Maoyecha tea. J Funct Foods 7:180–190.
https://doi.org/10.1016/j.jff.2014.02.013 48. Masuda K, Guo XF, Uryu N, Hagiwara T, Watabe S (2008) Isolation of marine yeasts collected from the Pacific Ocean showing a high production of γ-aminobutyric acid. Biosci Biotechnol Biochem 72:3265–3272.
https://doi.org/10.1271/bbb.80544 49. Song NE, Baik SH (2014) Identification and characterization of high GABA and low biogenic amine producing indigenous yeasts isolated from Korean traditional fermented Bokbunja (Rubus coreanus Miquel) wine. J Biotechnol 185:S83.
https://doi.org/10.1016/j.jbiotec.2014.07.285 50. Zhang Q, Sun Q, Tan X, Zhang S, Zeng L, Tang J et al (2020) Characterization of γ-aminobutyric acid (GABA)-producing
Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing. J Biosci Bioeng 129:447–453.
https://doi.org/10.1016/j.jbiosc.2019.10.001 51. Nascimento Fraga L, Karoline de Souza Oliveira A, Pinheiro Aragao B, Alves de Souza D, Willian Propheta Dos Santos E, Alves Melo J et al (2021) Mass spectrometry characterization, antioxidant activity, and cytotoxicity of the peel and pulp extracts of Pitomba. Food Chem 340:127929.
https://doi.org/10.1016/j.foodchem.2020.127929 52. Ueda Y, Tsubuku T, Miyajima R (1994) Composition of sulfurcontaining components in onion and their flavor characters. Biosci Biotechnol Biochem 58:108–110.
https://doi.org/10.1271/bbb.58.108 53. Xiaogen Y, Elisabetta L, Harry R, Alexander TP, Stephan H, Xinping L, Xun F (2013) Flavour modifying compounds. WO/2013/010991
http://www.freepatentsonline.com/WO2013010991.html 54. Li Y, Bionda N, Yongye A, Geer P, Stawikowski M, Cudic P et al (2013) Dissociation of antimicrobial and hemolytic activities of gramicidin S through N-methylation modification. Chem Med Chem 8:1865–1872.
https://doi.org/10.1002/cmdc.201300232 55. Valerio F, Lavermicocca P, Pascale M, Visconti A (2004) Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol Lett 233:289–295.
https://doi.org/10.1111/j.1574-6968.2004.tb09494.x 56. Kluczyk A, Popek T, Kiyota T, de Macedo P, Stefanowicz P, Lazar C et al (2002) Drug evolution: p-aminobenzoic acid as a building block. Curr Med Chem (CMC) 9:1871–1892.
https://doi.org/10.2174/0929867023368872 57. Casadey R, Challier C, Altamirano M, Spesia MB, Criado S (2020) Antioxidant and antimicrobial properties of tyrosol and derivativecompounds in the presence of vitamin b2. Assays of synergistic antioxidant effect with commercial food additives. Food Chem 335(8):127576.
https://doi.org/10.1016/j.foodchem.2020.127576 58. Boronat A, Mateus J, Soldevila-Domenech N, Guerra M, Rodriguez- Morato J, Varon C, Munoz D, Barbosa F, Morales JC, Gaedigk A, Langohr K, Covas M-I, Perez-Mana C, Fito M, Tyndale RF, de la Torre R (2019) Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. A randomized, controlled trial. Free Radical Bio Med 143:471–481.
https://doi.org/10.1016/j.freeradbiomed.2019.08.03... 59. Dieuleveux V, Van Der Pyl D, Chataud J, Gueguen M (1998) Purification and characterization of anti-listeria compounds produced by Geotrichum candidum. Appl Environ Microbiol 64:800–803.
https://doi.org/10.1128/AEM.64.2.800-803.1998 60. Dao Y, Zhang K, Lu X, Lu Z, Liu C, Liu M et al (2019) The role of glucose and 2-oxoglutarate/malate translocator (OMT1) in the production of phenyllactic acid and p hydroxyphenyllactic acid, two food-borne pathogen inhibitors. J Agric Food Chem 67:5820–5826.
https://doi.org/10.1021/acs.jafc.9b01444 61. Wang JP, Yoo JS, Lee JH, Jang HD, Kim HJ, Shin SO et al (2009) Effects of phenyllactic acid on growth performance, nutrient digestibility, microbial shedding, and blood profile in pigs. J Anim Sci 87:3235–3243.
https://doi.org/10.2527/jas.2008-1555 62. Svanstrom A, Boveri S, Bostrom E, Melin P (2013) The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi. BMC Res Notes 6(1):1–9.
https://doi.org/10.1186/1756-0500-6-464 63. Prema P, Smila D, Palavesam A, Immanuel G (2010) Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food Bioprocess Technol 3:379–386.
https://doi.org/10.1007/s11947-008-0127‑1
64. Yu S, Jiang H, Jiang B, Mu W (2012) Characterization of D-lactate dehydrogenase producing D-3-phenyllactic acid from Pediococcus pentosaceus. Biosci Biotechnol Biochem 76:853–855.
https://doi.org/10.1271/bbb.110955 65. Kawamura T, Okubo T, Sato K, Fujita S, Goto K, Hamaoka T et al (2012) Glycerophosphocholine enhances growth hormone secretion and fat oxidation in young adults. Nutrition 28(11-12): 1122-1126.
https://doi.org/10.1016/j.nut.2012.02.011 66. Narukawa M, Kamiyoshihara A, Izu H, Fujii T, Misaka T (2020) Efficacy of long-term feeding of α-glycerophosphocholine for aging-related phenomena in old mice. Gerontology 66(3):1–11.
https://doi.org/10.1159/000504962 67. Bansal T, Alaniz RC, Wood TK, Jayaraman A (2010) The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. P Natl Acad of Sci US 107(1):228–233.
https://doi.org/10.1073/pnas.0906112107 68. Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ (2017) The diverse metabolic roles of peripheral serotonin. Endocrinology 158:1049–1063.
https://doi.org/10.1210/en.2016-1839 69. Surjana D, Damian DL (2011) Nicotinamide in dermatology and photoprotection. Skinmed 9(6):360–365. PMID: 22256624
70. Joseph A, Bernardes CES, da Piedade MEM (2012) Heat capacity and thermodynamics of solid and liquid pyridine-3-carboxylic acid (nicotinic acid) over the temperature range 296 K to 531 K. J Chem Thermodyn 55:23–28.
https://doi.org/10.1016/j.jct.2012.06.010 71. Xie Z, Cao N, Wang C (2021) A review on β-carboline alkaloids and their distribution in foodstuffs: a class of potential functional components or not? Food Chem 348:129067.
https://doi.org/10.1016/j.foodchem.2021.129067 72. Gallardo-Fernandez M, Valls-Fonayet J, Valero E, Hornedo- Ortega R, Richard T, Troncoso AM, Garcia-Parrilla MC (2022) Isotopic labelling-based analysis elucidates biosynthesis pathways in
Saccharomyces cerevisiae for melatonin, serotonin and hydroxytyrosol formation. Food Chem 374:131742.
https://doi.org/10.1016/j.foodchem.2021.131742 73. Liu S, Bai M, Zhou J, Jin Z, Xu Y, Yang Q, Zhou J, Zhang S, Mao J (2022) Analysis of genes from
Saccharomyces cerevisiae HJ01 participating in aromatic alcohols biosynthesis during huangjiu fermentation. LWT-Food Sci Technol 154:112705.
https://doi.org/10.1016/j.lwt.2021.112705 74. Chrzanowski G (2020)
Saccharomyces cerevisiae-an interesting producer of bioactive plant polyphenolic metabolites. Int J Mol Sci 21: 7343.
https://doi.org/10.3390/ijms21197343 75. Fernandez M, Zuniga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Mcrobip 32(3):155.
https://doi.org/10.1080/10408410600880643 76. Park B, Hwang H, Chang JY, Hong SW, Lee SH, Jung MY, Sohn SO, Park HW, Lee JH (2017) Identification of 2-hydroxyisocaproic acid production in lactic acid bacteria and evaluation of microbial dynamics during kimchi ripening. Sci Rep 7:10904.
https://doi.org/10.1038/s41598-017-10948-0 77. Loh LX, Ng DHJ, Toh M, Lu Y, Liu SQ (2021) Targeted and nontargeted metabolomics of amino acids and bioactive metabolites in probiotic-fermented unhopped beers using liquid chromatography high-resolution mass spectrometry. J Agr Food Chem 69:14024–14036.
https://doi.org/10.1021/acs.jafc.1c03992 78. Magnusson J (2003) Antifungal activity of lactic acid bacteria. Acta Universitatis Agriculturae Sueciae Agraria
79. Li X, Ning Y, Liu D, Yan A, Wang Z, Wang S, Miao M, Zhu H, Jia Y (2015) Metabolic mechanism of phenyllactic acid naturally occurring in chinese pickles. Food Chem 186:265–270.
https://doi.org/10.1016/j.foodchem.2015.01.145 80. Schmidt M, Lynch KM, Zannini E, Arendt EK (2017) Fundamental study on the improvement of the antifungal activity of lactobacillus reuteri r29 through increased production of phenyllactic acid and reuterin. Food Control 88:139–148.
https://doi.org/10.1016/j.foodcont.2017.11.041 81. Zheng Z, Ma C, Gao C, Li F, Qin J, Zhang H et al (2011) Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of bacillus coagulans sdm. PLoS ONE 6(4):e19030.
https://doi.org/10.1371/journal.pone.0019030 82. Liu F, Wang F, Du L, Zhao T, Doyle MP, Wang D et al (2017) Antibacterial and antibiofilm activity of phenyllactic acid against enterobacter cloacae. Food Control 84:442–448.
https://doi.org/10.1016/j.foodcont.2017.09.004 Примечание издателя: Springer Nature сохраняет нейтралитет в отношении юридических претензий к опубликованным данным и принадлежности к учреждениям и организациям.